Project:

\qquad
Customer: \qquad

Engineer:

\qquad

Pump Manufacturer:

\qquad

Technical Data Submittal Document

GPx Series

Full Service
Electric Fire Pump Controller with Automatic Power Transfer Switch

Contents:
Data Sheets
Dimensional Data
Wiring Schematics Field Connections

Select starting method

\square
 Model GPA
 Across the line

Model GPS
Soft Start Soft Stop

Model GPY

Wye-Delta Open
*

Model GPP
Partwinding

\square Model GPR
 Autotransformer

Model GPW
 Wye-Delta Closed

*

GPx Series Full Service Electric Fire Pump Controller with Automatic Power Transfer Switch

Standard, Listings, Approvals and Certifications	Built to NFPA 20 (latest edition)		
	Underwriters Laboratory (UL)	- UL218 - Fire Pump Controllers - UL 1008 - Automatic power transfer switches for fire pump controllers	
	FM Global	Class 1321/1323	
	New York City	Accepted for use in the City of New York by the Department of Buildings	
	CE Mark	Various EN, IEC \& CEE directives and standards	
	Built in Canada or U.A.E	Built in Europe	
	\square CE Mark Option	Supplied as Standard	
Enclosure	Protection Rating		
	Built in Canada or U.A.E	Built in Europe	
	\square Standard: NEMA 2	\square Standard: IP55	
	Optional		
	\square NEMA 12	\square NEMA 4X-304 sst painted	\square IP54
	\square NEMA 3	\square NEMA 4X-304 sst brushed finish	\square IP55
	\square NEMA 3R	\square NEMA 4X-316 sst painted	\square IP65
	\square NEMA 4	\square NEMA 4X-316 sst brushed finish	\square IP66
	Accessories - Bottom entry gland plate - Lifting Lugs - Keylock handle	Paint Specifications - Red RAL3002 - Powder coating - Glossy textured finish	

Shortcircuit Withstand Rating	$\begin{aligned} & 200 \mathrm{~V} \text { to } 208 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 220 \mathrm{~V} \text { to } 240 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$	380 V to 415 V $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	$\begin{gathered} 440 \mathrm{~V} \text { to } 480 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 575 \mathrm{~V} \text { to } 600 \mathrm{~V} \\ 60 \mathrm{~Hz} \end{gathered}$
\square Standard 100kA	5-150 (3.7-110)	5-200 (3.7-149)	5-300 (3.7-223)	5-400 (3.7-298)	N/A
Optional 150kA					
Standard 50 kA	200 (149)	250 (186)	350-450 (261-335)	450-500 (335-373)	5-500 (3.7-373)
\square Optional 100kA	N/A	N/A	350-500 (261-373)	450-500 (335-373)	
\square Optional 200kA	5-150 (3.7-110)	5-200 (3.7-149)	5-300 (3.7-223)	5-400 (3.7-298)	N/A

*Please see Disconnecting Means details on page 4

Ambient Temperature Rating	Standard: \square $4^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C} / 39^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ Controllers built in Dubai, UAE (Tornatech FZE) are supplied standard with $55^{\circ} \mathrm{C}$ rating.
Surge Suppression	Surge arrestor rated to suppress surges above line voltage

Audible Alarm	Alarm buzzer - 85dB at 3 meters
Visual Indications	- Power available - Motor run - Periodic test - Manual start - Deluge valve start - Remote automatic start - Remote manual start - Emergency start - Pump on demand/Automatic start - Pump room temperature (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$) - Lockout
Visual \& Audible Alarms	Visual only - Alternate lock rotor current - Alternate power phase reversal - Automatic transfer switch trouble - Control voltage not healthy - Invalid cut-in - Lock rotor current - Loss of power - Low ambient temperature Visual and Audible - ACB in OFF or tripped - Alternate IS tripped/open - Fail to start - Low water level - Motor trouble - Normal power phase reversal - Overcurrent - Overvoltage - Phase loss L1 - Phase loss L2 - Phase loss L3 - Phase unbalanced - Pressure transducer fault detected - Pump on demand - Pump room alarm - Service required - Undercurrent - Undervoltage - Check weekly test solenoid - Weekly test cut-in reached
Remote Alarm Contacts	DPDT-8A-250V.AC - Power available - Phase reversal - Motor run - Common pump room alarm (field re-assignable)** - Overvoltage - Undervoltage - Phase unbalance - Low pump room temperature - High Pump room temperature - Common motor trouble (field re-assignable)** - Overcurrent - Fail to start - Undercurrent - Ground fault - Free (field programmable)**

[^0]| ViZiTouch V2.1 Operator Interface | - Embedded microcomputer with software PLC logic
 - 7.0" color touch screen (HMI technology)
 - Upgradable software
 - Multi-language | | |
| :---: | :---: | :---: | :---: |
| Communication Protocol Capability | - Protocol: Modbus
 - Connection type: Shielded female connector RJ45
 - Frame Format: TCP/IP
 - Addresses: See bulletin MOD-GPx | | |
| Operation | Automatic Start | - Start on pressure drop
 - Remote start signal from automatic device
 - Deluge valve start | |
| | Manual Start | - Start pushbutton
 - Run test pushbutton
 - Remote start from m | device |
| | Stopping | - Manual with Stop pu
 - Automatic after expir | on of minimum run timer *** |
| | Timers | Field Adjustable \& Visual Countdown | - Minimum run timer ***(off delay)
 - Sequential start timer (on delay)
 - Periodic test timer |
| | Actuation | Visual Indication | - Pressure
 - Non-pressure |
| | Mode | | - Automatic
 - Non-automatic |

[^1]
GPx Series Full Service Electric Fire Pump Controller with Automatic Power Transfer Switch

\square	A4	Flow switch provision					
\square	A8	Foam pump application w/o pressure transducer and run test solenoid valve.					
\square	A9	Low zone pump control function					
\square	A10	Middle zone pump control function					
\square	A11	High zone pump control function					
\square	A13	Non-pressure actuated controller w/o pressure transducer and run test solenoid valve					
\square	A16	Lockout/interlock circuit from equipment installed inside the pump room					
\square	B11	Built in alarm panel (120V.AC supervisory power) providing indication for: -Audible alarm \& silence pushbutton for motor run, phase reversal, loss of phase. -Pilot lights for loss of phase \& supervisory power available					
\square	B11B	Built in alarm panel same as B11 but 220- 240VAC supervisory power					
\square	B19A	High motor temperature c/w thermoster relay and alarm contacts (DPDT)					
\square	B19B	High motor temperature c/w PT100 relay and alarm contacts (DPDT)					
\square	B21	Ground fault alarm detection c/w visual indication and alarm contact (DPDT)					
\square	C1	Extra motor run alarm contact (DPDT)					
\square	C4	Periodic test alarm contact (DPDT)					
\square	C6	Low discharge pressure alarm contact (DPDT)	$	$	\square	C7	Low pump room temperature alarm contact (DPDT)
:---	:---	:---					
\square	C10	Low water reservoir level alarm contact (DPDT)					
\square	C11	High electric motor temperature alarm contact (DPDT)					
\square	C12	High electric motor vibration c/w visual indication and alarm contact (DPDT)					
\square	C14	Pump on demand / automatic start alarm contact (DPDT)					
\square	C15	Pump fail to start alarm contact (DPDT)					
\square	C16	Control voltage healthy alarm contact (DPDT)					
\square	C17	Flow meter valve loop open c/w visual indication and alarm contact (DPDT)					
\square	C18	High water reservoir level c/w visual indication and alarm contact (DPDT)					
\square							
\square							

$\square \quad \mathrm{C} 19$	Emergency start alarm contact (DPDT)
$\square \quad \mathrm{C} 20$	Manual start alarm contact (DPDT)
$\square \quad \mathrm{C} 21$	Deluge valve start alarm contact (DPDT)
$\square \quad \mathrm{C} 22$	Remote automatic start alarm contact (DPDT)
$\square \quad \mathrm{C} 23$	Remote manual sta
$\square \quad \mathrm{C} 24$	High pump room temperature alarm contact (DPDT)
$\square \quad \mathrm{C} 25$	Second set of standard alarm contacts (DPDT) (Typical for city of Los Angeles and Denver)
$\square C x$	Additional visual and alarm contact (Specify function) (DPDT)
$\square \quad \mathrm{D} 1$	Low suction pressure transducer for fresh water rated at 0-300PSI with visual indication and alarm contact
\square D1A	Low suction pressure transducer for sea water rated at 0-300PSI with visual indication and alarm contact
$\square \quad \mathrm{D} 5$	Pressure transducer and run test solenoid valve for fresh water rated for 0-500PSI (for factory calibration purposes only)
\square D5D	Pressure transducer and run test solenoid valve for sea water rated for 0-500PSI
$\square \quad \mathrm{D} 10$	Omit mounting feet (when applicable)
D13	High withstand rating for: - 200 V to 208 V @ 150 HP max. $=150 \mathrm{kA}$ * - 200 V to 208 V @ $200 \mathrm{HP}=100 \mathrm{kA}$ * - 220 V to 240 V @ 200 HP max. $=150 \mathrm{kA}{ }^{*}$ - 220 V to $240 \mathrm{~V} @ 250 \mathrm{HP}=100 \mathrm{kA}$ * - 380 V to $415 \mathrm{~V} @ 300 \mathrm{HP}$ max. $=150 \mathrm{kA}$ * - 380 V to $415 \mathrm{~V} @ 350 \mathrm{HP}$ to $450 \mathrm{HP}=100 \mathrm{kA}$ * - 440 V to 480 V @ 400 HP max. $=150 \mathrm{kA}{ }^{*}$ -440V to $480 \mathrm{~V} @ 450 \mathrm{HP}$ to $500 \mathrm{HP}=100 \mathrm{kA}$ * -600V @ 500HP max. = 100kA*
\square D13A	High withstand rating for: - 380 V to $480 \mathrm{~V}=65 \mathrm{kA}$ * - $600 \mathrm{~V}=25 \mathrm{kA}$ *
\square D13B	High withstand rating for: - 200 V to 208 V @ 150 HP max. $=200 \mathrm{kA}{ }^{*}$ - 220 V to 240 V @ 200 HP max. $=200 \mathrm{kA}{ }^{*}$ - 380 V to 415 V @ 300 HP max. $=200 \mathrm{kA} \mathrm{A}^{*}$ - 440 V to 480 V @ 400 HP max. $=200 \mathrm{kA}{ }^{*}$
$\square \quad$ D14	Anti-condensation heater \& thermostat
\square D14A	Anti-condensation heater \& humidistat
D14B	Anti-condensation heater \& thermostat \& humidistat

Note: Options chosen from this page are not electrically represented on the wiring schematics in this submittal package.

GPx Series Full Service Electric Fire Pump Controller with Automatic Power Transfer Switch

$\left.\left.\begin{array}{|l|l|}\hline \square \text { D15 } & \text { Tropicalization } \\ \hline \square \text { D18 } & \text { CE Mark with factory certificate } \\ \hline \square \text { D26 } & \begin{array}{l}\text { Modbus with RTU frame format and RS485 } \\ \text { connection }\end{array} \\ \hline \square \text { D27 } & \begin{array}{l}\text { Motor heater connection (external single } \\ \text { phase power source and heater on/off } \\ \text { contact) }\end{array} \\ \hline \square \text { D27A } & \begin{array}{l}\text { Motor heater connection (internal single phase } \\ \text { power source and heater on/off contact) }\end{array} \\ \hline \square \text { D28 } & \text { Customized drawing set }\end{array} \right\rvert\, \begin{array}{l}\square \text { D34A }\end{array} \begin{array}{l}\text { Field programmable I/O board - } \\ \text { 5 Input / 5 output }\end{array}\right]$

Additional Options:

\square \qquad
\square
\square
\square

Note: Options chosen from this page are not electrically represented on the wiring schematics in this submittal package.

1 - Color touch screen
2 - Onscreen menu

- HOME page
- ALARM page
- CONFIGURATION page
- HISTORY page
- SERVICE page
- MANUAL page
- LANGUAGES page

3 - Power LED (3 colors)
4 - START button
5-STOP button
6 - TRANSFER SWITCH TEST button
7 - RUN TEST button
8 - Alarm buzzer

Power Terminals

ALUMINUM CONDUCTORS for Isolating Switch (IS1).

Bending Space	5"(127 mm)							$8{ }^{\prime \prime}(203 \mathrm{~mm})$		10 " (254 mm)
Voltage	5	7.5	10	15	20	25	30	40	50	60
208	1x (10 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (3 to 1/0)	1x (1 to 1/0)	$1 \times(1 / 0)$	1× (3/0)	1x (4/0 to 250)	$\begin{array}{\|l\|} \hline 1 \times(300)^{* *} \text { or } \\ \hline 1 \times(250) 90^{\circ} \mathrm{C}^{*} \\ \hline \end{array}$
220 to 240	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (3 to 1/0)	1x (2 to 1/0)	1x (1 to 1/0)	1 x (2/0 to 3/0)	$1 \mathrm{x}(3 / 0) 90^{\circ} \mathrm{C}$ *	1x (250)
380 to 416	1x (10 to 1/0)	1x (10 to 1/0)	1x (10 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)	1x (1 to 1/0)	1x (1/0)
440 to 480	1x (10 to 1/0)	1x (10 to 1/0)	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)	1x (1 to 1/0)
600	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)			

$\begin{aligned} & \text { Bending } \\ & \text { Space } \end{aligned}$	12 " (305 mm)				16 " (406 mm)						
HP	75	100	125	150	200	250	300	350	400	450	500
208	2x (2/0 to 500)	$2 \times(4 / 0$ to 500)	$2 \times(300$ to 500)	$2 \times(350$ to 500$)$	3 x (300 to 500)	-------	-------	-	-------	------	---
220 to 240	$\frac{1 \times(350)^{* *}}{\text { N/A }}$	2x (3/0 to 500)	$2 \times(250$ to 500$)$	$2 \times(300$ to 500$)$	2x (500)	$3 \times(400$ to 500)	--------	-------	--------	-------	--------
380 to 416	1x (3/0)	$1 \times(250$ to 350$)$	$\frac{1 \times(350)^{* *}}{\mathrm{~N} / \mathrm{A}}$	2x (3/0 to 500)	$2 \times(4 / 0$ to 500$)$	2x (300 to 500)	$2 \times(500)$	$\begin{array}{\|l\|} \hline 3 \times(300 \text { to } 500)^{*+*} \\ 2 \times(500) 90^{\circ} \mathrm{C}^{*} \end{array}$	3 x (350 to 500)	$3 \times(400$ to 500)	-------
440 to 480	1x (1/0 to 3/0)	1x (3/0)	1x (250)	$\begin{array}{\|l\|} \hline 1 \times(300 \text { to } 350)^{* *} \\ \hline 1 \times(250) 90^{\circ} C^{*} \end{array}$	2 x (3/0 to 500)	2x (250 to 500)	2 x (300 to 500)	$2 \times(400$ to 500$)$	2x (500)	$2 \times(500) 90^{\circ} \mathrm{C}$ *	$3 \times(350$ to 500)
600	1x (1 to 1/0)	1x (2/0 to 3/0)	1x (3/0) $90^{\circ} \mathrm{C}^{*}$	1x (4/0 to 250)	1x (350 to 500)	$2 \times(3 / 0$ to 500$)$	2x (4/0 to 250)	2x (300 to 500)	2 x (350 to 500)	2 x (400 to 500)	$2 \times(500)$
$\begin{array}{\|c} \hline \text { Bending } \\ \text { Space } \\ \hline \end{array}$	5 " (127 mm)	$8{ }^{\prime \prime}(203 \mathrm{~mm})$			12 " (305 mm)						

${ }^{*}$ For standard enclosure, use $90^{\circ} \mathrm{C}$ aluminium wire. Consult Factory for Use of Conductors Rated Lower than $90^{\circ} \mathrm{C}$.
**Consult Factory

MODEL: GPU

BUILT TO THE LATEST EDITION OF THE NFPA20 \& NFPA70

COPPER CONDUCTORS for Isolating Switch (AIS1).

Power Terminals

ALUMINUM CONDUCTORS for Isolating Switch (AIS1).
Field Wiring According to Bending Space (AWG or MCM). Terminals AL1 - AL2 - AL3

Bending Space	5 " (127 mm)							$8{ }^{\prime \prime}(203 \mathrm{~mm})$		10 " (254 mm)
$\mathrm{Voltage}^{\mathrm{HP}}$	5	7.5	10	15	20	25	30	40	50	60
208	1x (10 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (3 to 1/0)	1x (1 to 1/0)	1x (1/0)	1x (3/0)	1x (4/0 to 250)	$\begin{array}{\|l\|} \hline 1 \times(300)^{* *} \text { or } \\ \hline 1 \times(250) 90^{\circ} \mathrm{C}^{*} \\ \hline \end{array}$
220 to 240	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (3 to 1/0)	1x (2 to 1/0)	1x (1 to 1/0)	$1 \times(2 / 0$ to $3 / 0)$	$1 \times(3 / 0) 90^{\circ} \mathrm{C}$ *	1x (250)
380 to 416	1x (10 to 1/0)	1x (10 to 1/0)	1 x (10 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)	1x (1 to 1/0)	1x(1/0)
440 to 480	1x (10 to 1/0)	1x (10 to 1/0)	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)	1x(1 to 1/0)
600	1x (10 to 1/0)	1x (8 to 1/0)	1x (6 to 1/0)	1x (6 to 1/0)	1x (4 to 1/0)	1x (4 to 1/0)	1x (2 to 1/0)			

Bending Space	12 " (305 mm)				16 " (406 mm)						
$\begin{array}{\|r} \mathrm{HP} \\ \text { Voltage } \end{array}$	75	100	125	150	200	250	300	350	400	450	500
208	$2 \times(2 / 0$ to 500)	$2 \times(4 / 0$ to 500$)$	2x (300 to 500)	2 x (350 to 500)	$3 \times(300$ to 500)	--------	-------	-------	-	------	--
220 to 240	$\frac{1 \times(350)^{* *}}{\text { N/A }}$	2 x (3/0 to 500)	2 x (250 to 500)	2 x (300 to 500)	$2 \times(500)$	$3 \times(400$ to 500)	-------	-------	--	-------	-------
380 to 416	1x (3/0)	$1 \times$ (250 to 350)	$\frac{1 \mathrm{x}(350)^{* *}}{\mathrm{~N} / \mathrm{A}}$	2x (3/0 to 500)	$2 \mathrm{x}(4 / 0$ to 500$)$	2 x (300 to 500)	2x (500)	$\begin{array}{\|l\|} \hline 3 x(300 \text { to } 500)^{*+1} \\ \hline 2 \times(500) 90^{\circ} C^{*} \\ \hline \end{array}$	3 x (350 to 500)	$3 \times(400$ to 500)	-------
440 to 480	1x (1/0 to 3/0)	1x (3/0)	1x (250)	$\begin{array}{\|l\|} \hline 1 \times(300 \text { to } 350)^{* *} \\ 1 \times(250) 90^{\circ} C^{*} \\ \hline \end{array}$	2x (3/0 to 500)	2x (250 to 500)	2 x (300 to 500)	$2 \times(400$ to 500$)$	2x (500)	$2 \times(500) 90^{\circ} \mathrm{C}$ *	$3 \times(350$ to 500$)$
600	1x (1 to 1/0)	1x (2/0 to 3/0)	1x (3/0) $90^{\circ} \mathrm{C}$ *	1x (4/0 to 250)	1x (350 to 500)	$2 \times(3 / 0$ to 500$)$	$2 \times(4 / 0$ to 250)	$2 \times(300$ to 500)	2 x (350 to 500)	$2 \times(400$ to 500)	2x (500)
Bending Space	5 " (127 mm)	$8{ }^{\prime \prime}(203 \mathrm{~mm})$			12 " (305 mm)						

*For standard enclosure, use $90^{\circ} \mathrm{C}$ aluminium wire. Consult Factory for Use of Conductors Rated Lower than $90^{\circ} \mathrm{C}$.
** Consult Factory

Notes:
1 - Controller is phase sensitive. Incoming lines must be connected in ABC sequence.

Drawing for information only
Manutacturer reserves the

ELECTRIC FIRE PUMP CONTROLLER

MODEL:GPP/GPW/GPY

BUILT TO THE LATEST EDITION OF THE NFPA20 \& NFPA70

	$\begin{aligned} & \text { DRAWING NUMBER } \\ & \text { GPX-TD802/E } \end{aligned}$
	DWG REV. 0
	SHEET 1 OF 1

COPPER CONDUCTORS for Motor Connection (1M-2M).

Field Wiring According to Bending Space (AWG or MCM). Terminals T1-T2-T3-T4-T5-T6-T7-T8-T9

$\mathrm{Voltage}^{\mathrm{HP}}$	5	7.5	10	15	20	25	30	40	50	60	
208	1x (10 to 4)	1x (10 to 4)	1x (10 to 4)	1x (8 to 4)	1x (8 to 4)	1x (6 to 4)	1x (6 to 4)	1x (4 to 2/0)	1x (2 to 2/0)	1x (1 to 2/0)	
220 to 240	1x (10 to 4)	1x (10 to 4)	1x (10 to 4)	1x (8 to 4)	1x (8 to 4)	1x (6 to 4)	1 x (6 to 4)	1x (4)	1x (3 to 2/0)	1x (2 to $2 / 0)$	
380 to 416	1x (10 to 4)	1 x (8 to 4)	1 x (8 to 4)	$1 \times(6$ to 4)	1× (4)						
440 to 480	1x (10 to 4)	1x (8 to 4)	1x (8 to 4)	1 x (6 to 4)							
600	1x (10 to 4)	1x (8 to 4)	1x (8 to 4)								
Voltage	75	100	125	150	200	250	300	350	400	450	500
208	1x (2/0 to 3/0)	1x (3/0 to 300)	1x (250 to 300)	$2 \mathrm{x}(1 / 0$ to 300$)$	2x (3/0 to 350)	-------	-------	-------	--------	-------	-------
220 to 240	1x (1/0 to 2/0)	1x (3/0)	1x (4/0 to 300)	1x (300)	$2 \times(2 / 0$ to 300$)$	$2 \times(4 / 0$ to 350$)$	--------	--------	-------	-------	-------
380 to 416	1x (4 to 2/0)	1x (2 to 2/0)	$1 \mathrm{x}(1 / 0$ to $2 / 0)$	1 x (2/0 to 3/0)	$1 \times(4 / 0$ to 300$)$	1x (300)	2x (2/0 to 300)	$2 \times(3 / 0$ to 300$)$	$2 \times(4 / 0$ to 350$)$	$2 \times(4 / 0$ to 350$)$	--------
440 to 480	1× (4)	1x (3 to $2 / 0$)	1x (2 to 2/0)	1x (1/0 to 3/0)	$1 \times(2 / 0$ to $3 / 0)$	$1 \times(4 / 0$ to 300$)$	1x (300)	$2 x(1 / 0$ to 300$)$	$2 \times(2 / 0$ to 300$)$	$2 \times(3 / 0$ to 350$)$	$2 \times(4 / 0$ to 350$)$
600	1x (6 to 4)	1x (4)	1x (3 to 2/0)	1x (2 to $2 / 0$)	$1 \times(1 / 0$ to $3 / 0)$	$1 \times(2 / 0$ to $3 / 0)$	1x (4/0 to 300)	1x (250 to 300)	1x (300)	2x (1/0 to 300)	$2 \times(2 / 0$ to 300$)$

ALUMINUM CONDUCTORS for Contactor (1M-2M).
Field Wiring According to Bending Space (AWG or MCM). Terminals T1-T2-T3-T4-T5-T6-T7-T8-T9

Voltage	5	7.5	10	15	20	25	30	40	50	60	
208	1x (12 to 2/0) **	1x (10 to 2/0) **	$1 \mathrm{x}(10 \text { to } 2 / 0)^{* *}$	1x (8 to 2/0) **	1x (6 to 2/0) **	1x (4 to 2/0) **	1x (4 to $2 / 0)^{* *}$	1x (2 to 2/0)	1x (1/0 to 2/0)	1x (2/0)	
220 to 240	1x (12 to 2/0) **	1x(10 to 2/0) **	1x (10 to 2/0) **	1x (8 to 2/0) **	1x (8 to $2 / 0)^{* *}$	1x (6 to 2/0) **	1x (4 to 2/0) **	1x (2 to $2 / 0)^{* *}$	1x (1 to 2/0)	1x (1/0 to 2/0)	
380 to 416	1x (12 to 2/0) **	1x (12 to $2 / 0)^{* *}$	1x (12 to 2/0)**	1x (10 to 2/0) **	1x (10 to 2/0) **	1x (8 to 2/0) **	1x (8 to 2/0) **	1x (6 to 2/0)**	1x (4 to 2/0)**	1x (3 to 2/0)**	
440 to 480	$1 \times(12 \text { to } 2 / 0)^{* *}$	1x (12 to $2 / 0)^{* *}$	1x (12 to 2/0)**	1x (12 to 2/0)**	1x (10 to 2/0) **	1x (10 to 2/0)***	1x (8 to $2 / 0)^{* *}$	1x (8 to 2/0)**	1x (6 to $2 / 0)^{* *}$	1x (4 to $2 / 0)^{* *}$	
600	1x (12 to 2/0) **	1x(12 to $2 / 0)^{* *}$	1x (12 to 2/0)**	1x (12 to 2/0)**	1x (10 to 2/0) **	1x (10 to 2/0)**	1x (10 to 2/0)**	$1 \mathrm{x}(8 \text { to } 2 / 0)^{* *}$	1x (8 to $2 / 0)^{* *}$	1x (6 to $2 / 0)^{* *}$	
$\mathrm{Voltage}^{\mathrm{HP}}$	75	100	125	150	200	250	300	350	400	450	500
208	1x (3/0)	Consult Factory	$1 \times(300) 90^{\circ} \mathrm{C}$ *	2x (3/0 to 300)	$2 \times(250$ to 350$)$	--------	--------	--------	--------	-------	-------
220 to 240	1x (2/0) $90^{\circ} \mathrm{C}$ *	Consult Factory	1 x (300)	1x (300) $90^{\circ} \mathrm{C}$ *	$2 \mathrm{x}(4 / 0$ to 300$)$	2x (300 to 350)	-------	-------	--------	-------	------
380 to 416	1x (2 to $2 / 0$)	1x (1/0 to 2/0)	$1 \times(1 / 0$ to $2 / 0)$	$1 \times(3 / 0) 90^{\circ}{ }^{*}$	$1 \times$ (300)	1x (300) $90^{\circ} \mathrm{C}$ *	2x (4/0 to 300)	$2 \times(250$ to 300$)$	$2 \times(300$ to 350$)$	$2 \times(300$ to 350)	-------
440 to 480	1x (3 to $2 / 0)^{* *}$	1x (2 to $2 / 0$)	$1 \times(2 / 0) 90^{\circ} \mathrm{C}$ *	1x (2/0 to 3/0)	$1 \times(3 / 0) 90^{\circ} \mathrm{C}$ *	1x (300)	1x (300) $90^{\circ} \mathrm{C}$ *	2x (3/0 to 300)	$2 \times(4 / 0$ to 300$)$	2 x (250 to 350)	$2 \times(300$ to 350$)$
600	1x (4 to $2 / 0$) **	1x (3 to $2 / 0)^{\text {** }}$	1x (2 to $2 / 0$)	1x ($1 / 0$ to $3 / 0$)	1x (3/0)	1x (3/0) $90^{\circ} \mathrm{C}$ *	1x (300)	$1 \times(300) 90^{\circ} \mathrm{C}$ *	Consult Factory	2x (3/0 to 300)	$2 \times(4 / 0$ to 300$)$

*For standard enclosure, use $90^{\circ} \mathrm{C}$ aluminium wire. Consult Factory for Use of Conductors Rated Lower than $90^{\circ} \mathrm{C}$.
**Option V659 required.

Motor Terminals

Model:GPP

Models:GPY/GPW

[^0]: ${ }^{* *}$ Tornatech reserves the right to use any of these three alarm points for special specific application requirements.

[^1]: ***Can only be used if approved by the AHJ

